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Abstract—In a receive diversity system the use of multiple
antennas at one end of the link produces multiple channels. A
useful, although ill-defined, metric for such a link is the number
of independent channels provided. In this letter we discuss several
candidate metrics and compare their utility. We show that most
of the metrics available in the literature have limitations and
can exhibit non-physical behaviour. In order to improve on their
performance, we develop two novel measures for the number of
independent channels based on the statistical construction of the
channel and channel capacity.

I. I NTRODUCTION

Consider the classic situation of receiver diversity where
a single transmit antenna is communicating with anM -
element antenna array at the receiver. This is often described
as a single-input multiple-output system (SIMO). For such a
system, performance measures such as capacity, bit-error-rate
(BER) or signal-to-noise ratio (SNR) depend on the nature
of the M channels from transmitter (TX) to receiver (RX). It
is well-known that correlation between the channels usually
reduces performance. The effects of correlation can be largely
characterised by theM × M correlation matrix, but a more
pragmatic approach would be to develop a single measure
of the overall correlation. Instead of measuring this overall
correlation, we could approach the problem from the opposite
viewpoint and ask, how many independent channels are there?
The concept of the number of independent channels (NIC)
has obvious importance both as a practical measure and as a
source of theoretical insight into channel behaviour. Hence,
in this paper we consider this fundamental question. Related
work in this area includes [1]–[7].

To motivate our approach, consider two widely spaced re-
ceive antennas in a rich scattering environment. In this scenario
we are comfortable in accepting that a single transmitter has
two independent channels in which to communicate. If the
two antennas are co-located then there is only one channel.
Hence for small but non-zero separations we should expect
to encounter a value of NIC such that1 < NIC < 2.
Several metrics have been proposed to measure NIC [1]–[7]
or similar concepts in the context of a SIMO system. Several
previously defined metrics are ad-hoc in nature [1]–[4], some

are inherently insensitive to the correlations between antennas
[5], [6] and some have unreasonable physical properties.
Hence, this apparently simple situation is largely unresolved
and in this paper we develop two novel and improved NIC
metrics.

To begin, we should enumerate some desirable properties
of a NIC metric. These are

1) 1 ≤ NIC ≤ M .
2) The metric should be simple to compute.
3) The metric should measure a physical quantity or have

physical meaning.
4) The metric should have simple properties.
5) The metric should make physical sense in a range of

channel conditions.

Since the number of independent channels is not a single,
universally understood quantity there will be debate over
which metric is best. For example in this paper we present
two new metrics. One is purely a function of the channel
and the second is capacity based. Since capacity is inherently
dependent on SNR it can be argued that capacity cannot be
used to measure the number of independent channels since
this is independent of the noise at the receiver. Nevertheless,
capacity is a well-known concept and its use is somewhat
intuitive in this context. Another interesting issue is whether
NIC should increase as more antennas are deployed. Clearly,
if an antenna array is fixed and an additional antenna is
added then NIC should increase. However, if an extra antenna
is added and the antennas are rearranged, then there is no
guarantee that NIC will increase. This is made clear from
a simple example. Consider an equally spaced array of 3
antennas, labeled, from left to right, 1, 2 and 3. Now assume
a fourth antenna is added but the 4 antennas are rearranged so
that antennas 1,2 and 3,4 are co-located in the positions of the
original antennas 1 and 3. In this scenario NIC must drop. It
is clear that the behaviour of NIC is somewhat subtle and this
perhaps explains why no simple measure is widely accepted
at present.

The rest of the paper is laid out as below. Section II details
the SIMO system and channel model. Section III summarizes
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Fig. 1. The four correlation models parameterized by a decorrelation distance
of 0.5λ.

previous NIC metrics and Sec. IV develops two new metrics.
In Sec. V results are given and conclusions appear in Sec. VI.

II. SIMO SYSTEM

For concreteness consider a SIMO system where theM ×1
channel vector is denotedh and is complex Gaussian with
zero mean vector and covariance matrix,R. Notationally,
we describeh as CN (0,R). Hence, we are considering
correlated Rayleigh fading. In most cases this assumption can
be generalized but since it is the most important special case,
a thorough investigation is warranted.

Assuming the array is not so widely spaced as to encounter
different path loss or shadowing, we can assume without loss
of generality that the diagonal elements ofR are unity. The
elements ofR are denoted by(R)ij = rij . There are a very
large number of models for the correlation structure in a SIMO
system. Here we consider four types.

1) Exponential correlation:rij = a−dij , wheredij is the
distance between antennasi and j and0 < a < 1 [8].

2) The Jakes model:rij = J0(2πadij) [9].
3) A Gaussian decay model:rij = a−d2

ij .

4) A square root model:rij = a−
√

dij .

In each case the model is parameterized by a single pa-
rameter,a, and the four models cover a range of scenarios
from a continuous decay in the exponential to oscillation in
the Bessel function. Sample curves are shown in Fig. 1, where
Expon, Jakes, Gauss and Sqrt represent correlation types 1)-
4) respectively. Note that the correlation models are chosen
for simplicity and coverage of a range of behaviours rather
than physical reality. The correlation models shown in Fig.1
have all been parameterized bya, so that the correlation drops
to 0.5 at a spacing of half a wavelength. The spacing at which
the correlation is 0.5 is denoted the “decorrelation distance”
and can be used to set the value ofa. The decorrelation
distance is an arbitrary parameter. Simulation results in Sec. V
use the value of 0.5. It is convenient to write the correlated
channel vector,h, in terms of an independent and identically

distributed (iid)CN (0, IM ) vectoru, whereIM is theM×M
identity matrix. Hence we have

h = Au (1)

whereA is a lower triangularM × M matrix obtained from
the Cholesky decompositionR = A

†
A, where † denotes

the Hermitian transpose. Two special cases are of particular
interest. If the array is co-located thenR is a matrix of ones,
R = 1M , and NIC should be unity. For a widely separated
array,R = IM and NIC should beM .

III. NIC M ETRICS

In this section we describe several metrics which have been
proposed for NIC.

A. Ad-hoc metrics

In [4] a metric was suggested to capture correlation structure
and measure the “power balance and degrees of freedom”. The
metric is defined by

NIC1 =
tr(R)

λmax(R)
(2)

wheretr(·) denotes trace andλmax(·) is the maximum eigen-
value. In a similar vein an “effective degrees of freedom”
metric was used in [2], defined by

NIC2 =
[tr(R)]2

tr(R2)
(3)

Variations on NIC1 and NIC2 can be envisaged using different
matrix norms as below

NIC3 =
tr(R)

‖R‖∞
(4)

NIC4 =
[tr(R)]2

‖R‖2

F

(5)

where ‖R‖∞ = maxi{
∑M

j=1
|rij |} and ‖R‖F =

√

∑M

i=1

∑M

j=1
|rij |2 represent the infinity and Frobenius norm

respectively. All four metrics satisfy the desired property that
NIC = 1 for a co-located array and NIC= M for a widely
separated array.

B. Capacity based metrics

In a study of MIMO interference channels [3], the number
of spatial degrees of freedom is defined as

DOF = lim
ρ→∞

{

C(ρ)

log ρ

}

(6)

whereC(ρ) is the capacity at SNR= ρ. This definition can
also be used in the SIMO context. In [5] a general study
of DOF and diversity (DIV) for SIMO and MIMO systems
is undertaken. The resulting definitions are also in terms of
high SNR and in this limiting regime,ρ → ∞, neither DOF
or DIV are related toR. Hence, the DOF and DIV values
are independent of correlation. Clearly this is not what is
required here, where it is exactly the effects of correlation



on the channels that is of interest. Hence we propose the non-
limiting versions of DOF in [3] and [5] as

NIC5 =
E[C(ρ,M)]

log ρ
(7)

NIC6 =
E[C(ρ,M)]

E[C(ρ, 1)]
(8)

where C(ρ, n) is the SIMO capacity withn antennas and
SNR= ρ.

The values of the mean capacity for a spatially correlated
SIMO system are well known [10] and can be written

E[C(ρ,M)] =
1

log 2

M
∑

j=1

bj exp

(

1

ρλj

)

E1

(

1

ρλj

)

(9)

whereλ1, λ2, . . . , λM are the eigenvalues ofR, E1(·) is the
exponential integral,E1(x) =

∫ ∞
1

e−xt/t dt, and

bj = λM−1

j

∏

r 6=j

(λj − λr)
−1. (10)

Note that the result in (9) is only valid when the matrixR
has unequal eigenvalues. In the two special cases of interest
whereR = IM or R = 1M we have the respective special
cases [10]

E[C(ρ,M)] =
1

M

M−1
∑

k=0

exp(1/ρ)

k!ρk

{

(−1)kE1

(

1

ρ

)

+

k
∑

r=1

(−1)k−r

(

k

r

)

ρrΓ

(

r,
1

ρ

)

}

, (11)

E[C(ρ,M)] = exp (1/Mρ) E1

(

1

Mρ

)

, (12)

where Γ(·, ·) is the upper incomplete gamma function. The
result for R = 1M follows from [10] since in this case
the SIMO capacity expression collapses to a SISO expression
which is a special case of [10].

Note from (11) and (12) that NIC does not vary between
1 and M as in the first four metrics. Also, by definition it
varies with the SNR and is not therefore solely a function of
the channel.

C. Receiver based metrics

In [7] it was proposed to think of diversity as equiva-
lent to the shape parameter of the combiner output in a
maximum ratio combiner (MRC). In MRC, the output SNR
is given by γ = h

†
h = u

†
A

†
Au = u

†
Ru, using (1).

Using the eigenvalue decomposition ofR we can also write
γ = ũ

†diag(λ1, λ2, . . . , λM )ũ whereũ is another iid,M × 1,
CN (0, IM ) vector and diag(·) represents a diagonal matrix.
Finally, we have the result

γ =

M
∑

i=1

λi|ũi|2. (13)

In an iid fading channelλ1 = λ2 = · · · = λM = 1 andγ has
a Chi-squared distribution with shape parameterM . In [7] it

is suggested that in the correlated fading case also, a gamma
approximation toγ will have a corresponding shape parameter
which can be interpreted as a measure of diversity. Applying
this idea here, we note that

E[γ] =

M
∑

i=1

λi, Var[γ] =

M
∑

i=1

λ2

i . (14)

The standard method of moments [11] approach to fitting the
gamma shape parameter is to set the shape parameter equal to
the ratio ofE[γ]2 and Var(γ). Hence, we have a measure of
diversity, or the number of independent channels, given by

NIC =
E[γ]2

Var[γ]
(15)

=
[
∑M

i=1
λi]

2

∑M

i=1
λ2

i

(16)

=
tr(R)2

tr(R2)
. (17)

Note that this is the same as NIC2. Hence the ad-hoc metric
has justification from this viewpoint.

The second receiver based metric we propose is a decor-
relating receiver which processes the inputs to yield uncorre-
lated outputs, but has no power scaling. Hence, the channel
vector h = Au is linearly processed by the weight matrix
W =

√
MA

−1

‖A−1‖ which satisfies‖W‖2 = M = ‖IM‖2. The
output is

Wh =

√
M

‖A−1‖u (18)

which is an independent channel vector. The total power of
Wh can be used as a new metric defined by

NIC7 =
ME[u†

u]

‖A−1‖2
=

M2

∑M

i=1

1

λ2

i

. (19)

Although intuitively a nice idea this metric has problems since
one very small eigenvalue leads to NIC≈ 0. This behaviour is
similar to that of other metrics, such as entropy, which depend
on det(R) which vanish when an eigenvalue is zero. Hence,
this metric varies between0 and M . A rescaling could be
performed to force the metric to lie between1 andM but this
would be rather artificial. Hence this metric is not considered
further.

IV. PROPOSEDMETRICS

A. Construction metric

Note that the vectorh is constructed via the equationh =
Au where A is lower triangular. The iid vectoru can be
thought of as the input consisting ofM independent channels.
The first two elements ofh can be written as

h1 = A11u1 (20)

h2 = A21u1 + A22u2. (21)

Hence,h1 contains an independent channel of power|A11|2.
The second element,h2, contains part of the first channel, the



A21u1 term, and an independent component of power|A22|2.
Similarly we have

hr =

r−1
∑

i=1

Ariui + Arrur (22)

and therth element has an independent component of power
|Arr|2. In total, the vectorh contains independent components
of total power

∑M

r=1
|Arr|2. This is the proposed novel NIC

metric

NIC8 =

M
∑

r=1

|Arr|2. (23)

This metric has a physical interpretation as the total powerof
the independent components contained inh. Since the metric
is solely a function of the channel it has the advantage of
being independent of SNR. The drawback of this approach is
that it only applies to Gaussian channels where the scattered
components have the form given in (1).

An interesting feature of the metric is that the Cholesky
decomposition ofR depends on the ordering ofh. Hence,
different orderings ofh give different values of the metric.
At first sight, this non-uniqueness appears to be a problem.
However, for physical reasons only one ordering (or set of
equivalent orderings) is reasonable and the non-uniqueness
problem disappears. To understand this property consider the
fact that (20) - (22) themselves imply an ordering. Equations
(20) and (21), for example, construct channel 2 after channel
1. Hence, whichever antenna is deemed to correspond toh1 is
considered first and the antenna corresponding toh2 is consid-
ered second. For the metric to be physically reasonable it must
satisfy certain properties. For example, NIC must increaseif
an extra antenna is added without any rearrangement of the
existing antennas. Consider an array where antennas are to be
placed at positions 1, 2 and 3. Positions 1 and 3 locate the ends
of the array and position 2 is in the centre. Let NIC(i, j, k)
denote the NIC value with antennas at positionsi, j and k.
Here, we must have NIC(1, 2, 3) > NIC(1, 3). The way to
satisfy this constraint is to use the ordering 1,3,2 or 3,1,2.
By symmetry these are equivalent. Also, since positions 1 and
3 are occupied first, the addition of location 2, using (22),
adds an extra contribution to the existing NIC value. Hence,
instead of 3! possible orderings giving different values of
NIC, we have 2 possible equivalent orderings giving a unique
answer. Similarly with 4 antennas and 5 antennas we have the
possible orderings 1,4,2,3 and 1,5,3,2,4 respectively using a
similar labeling of antennas. In fact, this natural construction
ordering is also the ordering that maximizes NIC. This way
of viewing the ordering also ensures that NIC increases when
extra antennas are added without rearrangement.

As for metrics 1-4, the new metric ranges from1 to M . A
simple lower bound exists for the construction metric in the
common case of the exponential correlation model. In this sce-
nario,rij = a−dij and in the case of a uniformly spaced array,
rij = a−d|i−j|, whered = d12. For this correlation matrix it
can be shown that the Cholesky decomposition has leading di-
agonal given by(1,

√
1 − α2,

√
1 − α2, . . . ,

√
1 − α2), where

α = a−d. Proof is straightforward by induction. Hence we
have the lower bound

NIC8 ≥ 1 + (M − 1)(1 − α2) = 1 + (M − 1)α2. (24)

This bound satisfies NIC8 = 1 for α = 1 and NIC8 = M for
α = 0. However, it is a lower bound since the original ordering
of the antennas is used rather than the optimal, construction
ordering.

B. Capacity metric

We now propose a second metric which is based on the
capacity of the correlated system under consideration. Letthe
capacity of anM antenna SIMO system with correlationR
and SNRρ beC(ρ,M). We define the number of independent
channels, NIC9, by the number of receive antennas in an
uncorrelated system of equal ergodic capacity and equal SNR
ρ. SinceC(ρ,M) will not necessarily correspond to an iid
SIMO system with an integer number of antennas, we have

E[Ciid(ρ,m)] ≤ E[C(ρ,M)] ≤ E[Ciid(ρ,m + 1)] (25)

where we have defined the capacity of anm antenna iid SIMO
system asCiid(ρ,m). To determine an equivalent number of
antennas, we linearly interpolate between the two iid systems,
which has the physical interpretation of switching betweenm
andm + 1 antennas.

A drawback of any capacity based metric is that capacity
increases with extra antennas even if the channel gains are
identical. Hence capacity is measuring array gain as well as
the impact of independent channels. In order to account only
for the contribution of independent channels to the system,
we apply a correction factor to the capacities to remove the
contribution of the array gain. The corrected iid and correlated
capacities are given by

µiid(ρ,m) = E[Ciid(ρ,m)] − ∆m

µ(ρ,M) = E[C(ρ,M)] − ∆M (26)

where the correction factor∆j for j antennas and operating
SNR ρ can be shown from (12) to be

∆j = exp

(

1

ρj

)

E1

(

1

ρj

)

− exp

(

1

ρ

)

E1

(

1

ρ

)

. (27)

The factor∆j can be identified as the growth in capacity over
a single antenna system solely due to adding extra, identical
channels. With this notation we define the metric NIC9 as

NIC9 = m +
µ(ρ,M) − µiid(ρ,m)

µiid(ρ,m + 1) − µiid(ρ,m)
. (28)

The version of (28) which includes the array gain contribution
can be obtained from (26) and (28) with∆j = 0.

V. D ISCUSSION ANDRESULTS

Under normal conditions, say an array with half wavelength
spacings, the different metrics can all behave reasonably and
it is difficult to argue their relative merits. Hence, we consider
the realistic case where increasing numbers of antennas may
be employed but the array length is fixed. In particular, we



consider a linear array with a length of one wavelength
and equal spacing between the antennas. The decorrelation
distance is set to a half wavelength. For large numbers of
antennas the array becomes densely packed and this provides
a more rigorous test of whether the metrics provide physically
plausible results. This situation is interesting in its ownright
and there has been work on the capacity of such arrays [12]–
[14]. In this work we ignore coupling effects since the focus
is on statistical channel models.

Results for this scenario are shown in Figs. 2 to 7. Figure 2
shows that all four ad-hoc metrics reach a peak value for
NIC and then decay away in the case where the correlation
is exponential. Although not shown, this decay is even more
noticeable for the Gaussian and Jakes correlation models. It is
difficult to argue that NIC decreases steadily after a few anten-
nas are deployed. Hence these metrics are not recommended.

Figure 3 shows the sensitivity of the capacity based metrics
to SNR. Note that for NIC5 the number of independent
channels varies from 1.8 to 4.8 as the SNR moves from 0 dB
to 20 dB with 20 antennas. This is a large sensitivity to SNR
which is an undesirable feature in a NIC metric. Furthermore,
the precise meaning of such metrics is not clear.

The new construction metric is shown in Figs. 4 and 5. For
the correlation models which decay rapidly close to the origin
(the square root and exponential decay models) the NIC metric
increases steadily and begins to plateau. For the correlation
models which are smooth at the origin (the Gaussian and
Jakes models) the behaviour is different. For odd numbers of
antennas and for even numbers of antennas, the same rise and
leveling off is observed. However, as you move from an even
number to an odd number of antennas the NIC can drop. This
is reasonable since extra antennas will not always increase
NIC, it will depend on their placement. When you move from
an even number to an odd number of antennas, the actual
placement of all the antennas changes, with the exception of
the outer antennas. Hence, this behaviour is plausible. Further-
more, these results have considerable implications for theuse
of statistical channel models in closely packed arrays. The
behaviour of the correlations at small separations is critical
and the use of different models may lead to fundamentally
different behaviour.

Finally, the new capacity based metric, NIC9, is shown
for exponential and Jakes correlation models in Figs. 6 and
7, respectively. The figures were obtained for a decorrelation
distance of 0.5 andρ = 5 and 20 dB. Included in the figures
is NIC computed without the array gain correction factor, that
is using with ∆m = ∆M = 0 in (26). The figures clearly
demonstrate the need for the correction factor. Without the
correction factor, NIC increases approximately linearly for the
values ofM considered. A more reasonable metric is obtained
with the correction factor, where the NIC reaches a steady
state value of2 − 3 for a system withM ≈ 6 with the
parameters considered. Although the correction factor removes
the continual growth in NIC it also makes NIC more SNR
dependent and in Fig.7 we observe a slight but steady decay
in NIC with an SNR of20 dB. Clearly there are still some
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2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5

Number of antennas

N
um

be
r 

of
 in

de
pe

nd
en

t c
ha

nn
el

s

 

 
NIC

5
 P=10dB

NIC
5
 P=20dB

NIC
5
 P=30dB

NIC
6
 P=0dB

NIC
6
 P=10dB

NIC
6
 P=20dB

Fig. 3. NIC vs antenna numbers for metrics 5 and 6 with the exponential
correlation model.

concerns over the use of capacity based NIC metrics.

VI. CONCLUSIONS

We considered the problem of quantifying the effective
number of independent channels in a spatially correlated
SIMO system. We discussed a number of previously proposed
metrics and introduced two novel metrics to address their
shortcomings.

We proposed a construction metric based on the Cholesky
decomposition of the correlation matrix. The metric has a
physical interpretation as the total power contained in the
independent components of the channel. The metric returns a
plausible NIC for a variety of correlation models considered,
while highlighting the importance of antenna placement on the
metric output.

The second metric introduced defines NIC as the number
of receive antennas in an uncorrelated SIMO system of equal
capacity. A correction factor was introduced to remove the
effects of array gain from the capacity expression. For the
exponential and Jakes correlation models the resulting metric
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Fig. 5. NIC vs antenna numbers for metric 8 with various correlation models.

was shown to be well behaved, showing no significant fluctu-
ation with SNR and a moderate increase with the introduction
of additional antennas to a fixed size array. We note that both
of the proposed NIC metrics can also be applied to MIMO
channels. However, for reasons of space, these extensions are
left to an extended journal version of this paper.
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