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Abstract—In a receive diversity system the use of multiple are inherently insensitive to the correlations betweeerards
antennas at one end _of the Ilnk produces mgltlp_le channels. A [5], [6] and some have unreasonable physical properties.
useful, although ill-defined, metric for such a link is the number o6e this apparently simple situation is largely unnesol

of independent channels provided. In this letter we discuss sevdra d in thi d lop t | and i d NIC
candidate metrics and compare their utility. We show that most @Nd IN IS paper we develop two novel and improve

of the metrics available in the literature have limitations and Metrics.

can exhibit non-physical behaviour. In order to improve on their To begin, we should enumerate some desirable properties
performance, we develop two novel measures for the number of of a NIC metric. These are

independent channels based on the statistical construction of ¢h

channel and channel capacity. 1) 1< NIC < M.
2) The metric should be simple to compute.
|. INTRODUCTION 3) The metric should measure a physical quantity or have

physical meaning.

4) The metric should have simple properties.

5) The metric should make physical sense in a range of
channel conditions.

Consider the classic situation of receiver diversity where
a single transmit antenna is communicating with &f+
element antenna array at the receiver. This is often destrib
as a single-input multiple-output system (SIMO). For such a
system, performance measures such as capacity, bitrateor- Since the number of independent channels is not a single,
(BER) or signal-to-noise ratio (SNR) depend on the natutsiversally understood quantity there will be debate over
of the M channels from transmitter (TX) to receiver (RX). ltwhich metric is best. For example in this paper we present
is well-known that correlation between the channels ugualwo new metrics. One is purely a function of the channel
reduces performance. The effects of correlation can bellargand the second is capacity based. Since capacity is inherent
characterised by thé/ x M correlation matrix, but a more dependent on SNR it can be argued that capacity cannot be
pragmatic approach would be to develop a single measwged to measure the number of independent channels since
of the overall correlation. Instead of measuring this overallthis is independent of the noise at the receiver. Neverthele
correlation, we could approach the problem from the oppositapacity is a well-known concept and its use is somewhat
viewpoint and ask, how many independent channels are theiai®itive in this context. Another interesting issue is e
The concept of the number of independent channels (NISJC should increase as more antennas are deployed. Clearly,
has obvious importance both as a practical measure and a6 an antenna array is fixed and an additional antenna is
source of theoretical insight into channel behaviour. lencadded then NIC should increase. However, if an extra antenna
in this paper we consider this fundamental question. Re:latis added and the antennas are rearranged, then there is no
work in this area includes [1]-{7]. guarantee that NIC will increase. This is made clear from

To motivate our approach, consider two widely spaced ra- simple example. Consider an equally spaced array of 3
ceive antennas in a rich scattering environment. In thismge antennas, labeled, from left to right, 1, 2 and 3. Now assume
we are comfortable in accepting that a single transmitter ha fourth antenna is added but the 4 antennas are rearranged so
two independent channels in which to communicate. If tHBat antennas 1,2 and 3,4 are co-located in the positiorteeof t
two antennas are co-located then there is only one chanmgiginal antennas 1 and 3. In this scenario NIC must drop. It
Hence for small but non-zero separations we should expégclear that the behaviour of NIC is somewhat subtle and this
to encounter a value of NIC such that < NIC < 2. perhaps explains why no simple measure is widely accepted
Several metrics have been proposed to measure NIC [1]-ft]present.
or similar concepts in the context of a SIMO system. Several The rest of the paper is laid out as below. Section Il details
previously defined metrics are ad-hoc in nature [1]-[4], sonthe SIMO system and channel model. Section Ill summarizes



distributed (iid)CN (0, I,,) vectoru, wherel,, is the M x M
identity matrix. Hence we have

h = Au 1)

where A is a lower triangularM x M matrix obtained from
the Cholesky decompositioR = AfA, where denotes
the Hermitian transpose. Two special cases are of panticula
interest. If the array is co-located th&his a matrix of ones,
R = 1,;, and NIC should be unity. For a widely separated

Correlation

I ] array,R = I, and NIC should bé\/.
o2 / I1l. NIC METRICS
045 02 04 06 08 1 In this section we describe several metrics which have been
Spacing in wavelengths proposed fOf NIC.

Fig. 1. The four correlation models parameterized by a deletive distance A. Ad-hoc metrics

of 0.52. In [4] a metric was suggested to capture correlation strectu
and measure the “power balance and degrees of freedom”. The

previous NIC metrics and Sec. IV develops two new metricB1€tric is defined by

In Sec. V results are given and conclusions appear in Sec. VI. NIC tr(R)
1 = ee——

II. SIMO SYSTEM Amaz(R)
wheretr(-) denotes trace anil,,,,..(-) is the maximum eigen-
value. In a similar vein an “effective degrees of freedom”
metric was used in [2], defined by

tr(R)]?

)

For concreteness consider a SIMO system wheréthe1
channel vector is denoted and is complex Gaussian with
zero mean vector and covariance matrRR, Notationally,
we describeh as CAM(0,R). Hence, we are considering
correlated Rayleigh fading. In most cases this assumpaon ¢
be generalized but since it is the most important specia,c o . . .

9 . R P P Fariations on NIG and NIG, can be envisaged using different
a thorough investigation is warranted. :
‘ : . Enatnx norms as below
Assuming the array is not so widely spaced as to encounter

NIC, =

different path loss or shadowing, we can assume without loss NIC; = tr(R) ()
of generality that the diagonal elementsRfare unity. The IR0
elements ofR are denoted byR);; = r;;. There are a very [tr(R)]?
large number of models for the correlation structure in aSIM NIC, = IE (5)
system. Here we consider four types. F

1) Exponential correlationr;; = a~%i, whered;; is the where |R|. = HlaXi{Z?il Irij|} and [|R[Fr =

distance between antennaandj and0 < a <1 [8]. \/E”i M |ri;|? represent the infinity and Frobenius norm
2) The Jakes modet;; = Jo(2rad;;) [9] (AT - - :
: 1 0l ) 3 respectively. All four metrics satisfy the desired propettat
3) A Gaussian decay model;; = a” . NIC = 1 for a co-located array and NIE M for a widely

4) A square root model:;; = a” dij separated array.
In each case the model is parameterized by a single e

Capacity based metrics
rameter,a, and the four models cover a range of scenarios .
from a continuous decay in the exponential to oscillation in In & study of MIMO interference channels [3], the number

the Bessel function. Sample curves are shown in Fig. 1, whéespatial degrees of freedom is defined as
Expon, Jakes, Gauss and Sqrt represent correlation types 1) { (p)}

4) respectively. Note that the correlation models are amose DOF = lim

p—00

(6)

for simplicity and coverage of a range of behaviours rather log p

than physical reality. The correlation models shown in Big. where C(p) is the capacity at SNR= p. This definition can
have all been parameterized byso that the correlation dropsalso be used in the SIMO context. In [5] a general study
to 0.5 at a spacing of half a wavelength. The spacing at whioh DOF and diversity (DIV) for SIMO and MIMO systems
the correlation is 0.5 is denoted the “decorrelation distdn is undertaken. The resulting definitions are also in terms of
and can be used to set the value «f The decorrelation high SNR and in this limiting regimey — oo, neither DOF
distance is an arbitrary parameter. Simulation resultein 8 or DIV are related toR. Hence, the DOF and DIV values
use the value of 0.5. It is convenient to write the correlatete independent of correlation. Clearly this is not what is
channel vectorh, in terms of an independent and identicallyequired here, where it is exactly the effects of correfatio



on the channels that is of interest. Hence we propose the nansuggested that in the correlated fading case also, a gamma

limiting versions of DOF in [3] and [5] as approximation toy will have a corresponding shape parameter
EIC(p. M which can be interpreted as a measure of diversity. Applying
_ ElC(p, M)] o
NIC; = (7) this idea here, we note that
log p
E[C(p, M)] f i .
NICs = -2 ®) Elyl =) A, Varlyl = ) A7 (14)
° E[C(p, 1)] i=1 i=1
where C(p,n) is the SIMO capacity withn antennas and The standard method of moments [11] approach to fitting the
SNR= p. . . gamma shape parameter is to set the shape parameter equal to
The values of the mean capacity for a spaually correlatefe ratio ofE[y]?> and Vafv). Hence, we have a measure of
SIMO system are well known [10] and can be written diversity, or the number of independent channels, given by
M
1 1 E[y]?
E M)] = . — B | — NIC = 15
(Clp, M)] log 2 ij P (W\j) ' (PM) © varly] .
j=1 [E]u )\]2
where i, \a, ..., Ay are the eigenvalues @, E;(-) is the = 3\77112 (16)
exponential integralfy (z) = [ e~*!/t dt, and 2imi A
M-1 -1 = tr(R)? a7
by =My - A0 (10) = w®Y
r#j

hat th It . | id wh h - Note that this is the same as NICHence the ad-hoc metric
Note that the result in (9) is only valid when the mat has justification from this viewpoint.

has unequal eigenvalues. In the two special cases of int.eresl-he second receiver based metric we propose is a decor-
whereR =Ty, or R = 1,7 we have the respective SpeCIaLelating receiver which processes the inputs to yield wueeor

cases [10] lated outputs, but has no power scaling. Hence, the channel
M-1 h = Au is linearly processed by the weight matrix
1 exp(1/p) 1 vector A y P y g
E[C(p,M)] = 7 > T (=1)*Eq » W = ‘{Kﬁﬂ which satisfies|W||?> = M = ||[I;/||*>. The
. k=0 output is
k 1 VM
+> (-1 k_r< ) T (ﬂ ) ; 11 Wh = ——-u (18)
L))y e [A]
1 which is an independent channel vector. The total power of
E[C(p, M)] = exp (1/Mp) Ey (Mp) , (12) Wh can be used as a new metric defined by
T 2
whereI'(,-) is the upper incomplete ga_mma.func_tion. The NIC; = Mf[_‘: ‘2‘] — Jj\\f —. (19)
result for R = 1,; follows from [10] since in this case A Dim1 3z

the SIMO capacity expression collapses to a SISO expressi s . . . :
which is a special case of [10]. &Iﬂ'lough intuitively a nice idea this metric has problemscsi

Note from (11) and (12) that NIC does not vary betweef€ Very small eigenvalue I_eads to NA€0. This beha_viour is
1 and M as in the first four metrics. Also, by definition itSImIIar to that of other metrics, such as entropy, which depe

varies with the SNR and is not therefore solely a function Qf . de(R). Wh'c.h vanish when an eigenvalue Is zero. Hence,
the channel. his metric varies betweefi and M. A rescaling could be

performed to force the metric to lie betweerand M but this
C. Receiver based metrics would be rather artificial. Hence this metric is not consader

In [7] it was proposed to think of diversity as equivafurther.
lent to the shape parameter of the combiner output in a
maximum ratio combiner (MRC). In MRC, the output SNR i .
is given byy = hih = ufAtAu = ufRu, using (1). A Construction metric
Using the eigenvalue decomposition Bf we can also write  Note that the vectoh is constructed via the equatidn=

IV. PROPOSEDMETRICS

v = afdiag(A1, Az, . .., A\ar) Tt Whereit is another iid,A x 1, Au where A is lower triangular. The iid vecton can be
CN(0,1I,,) vector and diagy) represents a diagonal matrix.thought of as the input consisting 8f independent channels.
Finally, we have the result The first two elements dh can be written as

M

- hi = Anwu (20)
Y= Z/\i|ui|2- (13) b o~ A A 5

P 2 = Aaur + Axua. (21)

In an iid fading channeh; = A, = --- = \j; = 1 and~y has Hence,h; contains an independent channel of povér |2.

a Chi-squared distribution with shape parameétérIn [7] it The second elemenk,, contains part of the first channel, the



Asjuy term, and an independent component of powek|?. o = a~%. Proof is straightforward by induction. Hence we

Similarly we have have the lower bound
r—1 2 2
NICs > 1+ (M —1)(1 - =14+ (M-1)a". 24
b =S s+ A 22 s>1+(M—1)(1-a%)=1+(M—1)a? (24)
i=1 This bound satisfies NIC= 1 for « = 1 and NIG = M for

and therth element has an independent Component of pov\@r: 0. However, |t is a lower bound since the Orlglnal Ordering
|A,|2. In total, the vectoh contains independent component@f thg antennas is used rather than the optimal, constructio
of total power>" | |4,,|2. This is the proposed novel NIC ordering.

metric M B. Capacity metric
NICs = )[4, [* (23)  We now propose a second metric which is based on the
r=1 capacity of the correlated system under considerationthest

This metric has a physical interpretation as the total pasfer capacity of anA/ antenna SIMO system with correlatidd

the independent components containedhirSince the metric and SNRp be C'(p, M'). We define the number of independent

is solely a function of the channel it has the advantage ofiannels, NIG, by the number of receive antennas in an

being independent of SNR. The drawback of this approachuscorrelated system of equal ergodic capacity and equal SNR

that it only applies to Gaussian channels where the scedtteye Since C(p, M) will not necessarily correspond to an iid

components have the form given in (1). SIMO system with an integer number of antennas, we have
An interesting feature of the metric is that the Cholesky

decomposition ofR depends on the ordering df. Hence, E[Cia (p,m)] < E[C(p, M)] < E[Ciia(p,m +1)]  (25)

different orderings ofh give different values of the metric. where we have defined the capacity ofrarantenna iid SIMO

At first sight, this non-uniqueness appears to be a problegystem a<;q(p, m). To determine an equivalent number of

However, for physical reasons only one ordering (or set @htennas, we linearly interpolate between the two iid syste

equivalent orderings) is reasonable and the non-unigsen@gich has the physical interpretation of switching between

problem disappears. To understand this property consiger indm + 1 antennas.

fact that (20) - (22) themselves imply an ordering. Equation A drawback of any capacity based metric is that capacity

(20) and (21), for example, construct channel 2 after channgcreases with extra antennas even if the channel gains are

1. Hence, whichever antenna is deemed to correspohd i® identical. Hence capacity is measuring array gain as well as

considered first and the antenna corresponding tis consid- the impact of independent channels. In order to account only

ered second. For the metric to be physically reasonablest mgor the contribution of independent channels to the system,

satisfy certain properties. For example, NIC must incrébsewe apply a correction factor to the capacities to remove the

an extra antenna is added without any rearrangement of Htribution of the array gain. The corrected iid and carted

existing antennas. Consider an array where antennas aee t@dpacities are given by

placed at positions 1, 2 and 3. Positions 1 and 3 locate the end

of the array and position 2 is in the centre. Let NiG, k) pid(p,m) = E[Cia(p,m)] — Am

denote the NIC value with antennas at positiong and k. wip, M) =E[C(p, M)] - An (26)

Here, we must have NIQ,2,3) > NIC(1,3). The way to

satisfy this constraint is to use the ordering 1,3,2 or 3,1,\%/

By symmetry these are equivalent. Also, since positionsdl an

3 are occupied first, the addition of location 2, using (22), A, — exp (1> B (1> ~exp <1> B (1) @

adds an extra contribution to the existing NIC value. Hence, pJ pJ p p

instead of 3! possible orderings giving different values 6fpq factora; can be identified as the growth in capacity over

NIC, we have 2 possible equivalent orderings giving a uniquegingle antenna system solely due to adding extra, idéntica
answer. Similarly with 4 antennas and 5 antennas we have nnels. With this notation we define the metric Bi&

possible orderings 1,4,2,3 and 1,5,3,2,4 respectivelgguai

here the correction factah; for j antennas and operating
NR p can be shown from (12) to be

similar labeling of antennas. In fact, this natural constion NICo = m + M M) — pia(p,m) 28)
ordering is also the ordering that maximizes NIC. This way piia (p, M + 1) = piia (p, m)
of viewing the ordering also ensures that NIC increases WhgRe version of (28) which includes the array gain contritti
extra antennas are added without rearrangement. can be obtained from (26) and (28) witkh; = 0.

As for metrics 1-4, the new metric ranges frdmo M. A
simple lower bound exists for the construction metric in the V. DISCUSSION ANDRESULTS

common case of the exponential correlation model. In thés sc  Under normal conditions, say an array with half wavelength
nario,r;; = a~%s and in the case of a uniformly spaced arrayspacings, the different metrics can all behave reasonattdy a
rij = a~i—il whered = d;,. For this correlation matrix it it is difficult to argue their relative merits. Hence, we cioles

can be shown that the Cholesky decomposition has leading tilie realistic case where increasing numbers of antennas may
agonal given by(1,v1 —a2,v/1 —a2,...,4/1 — a?), where be employed but the array length is fixed. In particular, we




consider a linear array with a length of one wavelength
and equal spacing between the antennas. The decorrelatiol
distance is set to a half wavelength. For large numbers of
antennas the array becomes densely packed and this provide
a more rigorous test of whether the metrics provide phylsical
plausible results. This situation is interesting in its orght

and there has been work on the capacity of such arrays [12]-
[14]. In this work we ignore coupling effects since the focus
is on statistical channel models.

Results for this scenario are shown in Figs. 2 to 7. Figure 2
shows that all four ad-hoc metrics reach a peak value for
NIC and then decay away in the case where the correlation 1al
is exponential. Although not shown, this decay is even more T s 4 s s 3 & v 10
noticeable for the Gaussian and Jakes correlation mode4s. | Number of antennas
difficult to argue that NIC decreases steadily after a feveiant
nas are deployed. Hence these metrics are not recommend&d 2. NIC vs antenna numbers for metrics 1-4 with the expdaent

. L . .correlation model.

Figure 3 shows the sensitivity of the capacity based metrics
to SNR. Note that for NI§ the number of independent
channels varies from 1.8 to 4.8 as the SNR moves from 0 dB e reroas]
to 20 dB with 20 antennas. This is a large sensitivity to SNR a5l| - & -Nic, p=2ods
which is an undesirable feature in a NIC metric. Furthermore v~ NIC, P=30dB
the precise meaning of such metrics is not clear. I

The new construction metric is shown in Figs. 4 and 5. For asll . N|c: P=20dB
the correlation models which decay rapidly close to theiorig
(the square root and exponential decay models) the NIC enetri
increases steadily and begins to plateau. For the cooelati
models which are smooth at the origin (the Gaussian and
Jakes models) the behaviour is different. For odd numbers of
antennas and for even numbers of antennas, the same rise ar g
leveling off is observed. However, as you move from an even 99
number to an odd number of antennas the NIC can drop. This z 4
is reasonable since extra antennas will not always increase
NIC, it will depend on their placement. When you move frorﬂig. 3. NIC vs antenna numbers for metrics 5 and 6 with the expiiaie
an even number to an odd number of antennas, the actttdelation model.
placement of all the antennas changes, with the exception of
the outer antennas. Hence, this behaviour is plausibléh&ur
more, these results have considerable implications fougiee concerns over the use of capacity based NIC metrics.
of statistical channel models in closely packed arrays. The
behaviour of the correlations at small separations iscetiti
and the use of different models may lead to fundamentallyWe considered the problem of quantifying the effective
different behaviour. number of independent channels in a spatially correlated

Finally, the new capacity based metric, NIGs shown SIMO system. We discussed a number of previously proposed
for exponential and Jakes correlation models in Figs. 6 antetrics and introduced two novel metrics to address their
7, respectively. The figures were obtained for a decormeiatishortcomings.
distance of 0.5 an@ = 5 and 20 dB. Included in the figures We proposed a construction metric based on the Cholesky
is NIC computed without the array gain correction factoatth decomposition of the correlation matrix. The metric has a
is using withA,, = Ay = 0 in (26). The figures clearly physical interpretation as the total power contained in the
demonstrate the need for the correction factor. Without tledependent components of the channel. The metric returns a
correction factor, NIC increases approximately lineadythe plausible NIC for a variety of correlation models considkgre
values ofM considered. A more reasonable metric is obtainethile highlighting the importance of antenna placementten t
with the correction factor, where the NIC reaches a steadyetric output.
state value of2 — 3 for a system withM = 6 with the The second metric introduced defines NIC as the number
parameters considered. Although the correction factoowes of receive antennas in an uncorrelated SIMO system of equal
the continual growth in NIC it also makes NIC more SNRapacity. A correction factor was introduced to remove the
dependent and in Fig.7 we observe a slight but steady deedfects of array gain from the capacity expression. For the
in NIC with an SNR of20 dB. Clearly there are still some exponential and Jakes correlation models the resultingienet
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was shown to be well behaved, showing no significant fluctu-
ation with SNR and a moderate increase with the introductioff] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: Arfdamental
of additional antennas to a fixed size array. We note that both
of the proposed NIC metrics can also be applied to MIMQ7] A. J. Coulson, “Characterization of the mobile radio mpétih fading

channels. However, for reasons of space, these extengiens a ( . _ .
[8] S.Loyka, “Channel capacity of MIMO architecture usitig texponential

left to an extended journal version of this paper.
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